Skip to main content

Hello World!

There is a first time for everything... at least, that’s what my father used to say, and sometimes he was right. As I have been blogging for quite some time for my employers or through other channels, I think the time has come for me to have a personal blog that allows me a bit more freedom to explore what might be closer to my personal interest, where I can let go a bit, and include a deeper (or not) and personal view on topics concerning data:

Data in its several forms, with multiple layers, and from many perspectives. From traditional databases to new databases, from small to big data, simple to complex events. Intelligent and not so intelligent data.

Hello to the Data of Things!

I want to start with the iconic Hello World! phrase because it marked one of the most important moments in my career in IT. The phenomenal book written by Brian W. Kernighan and Dennis Ritchie called “The C programming language” was my introduction to the world of C and UNIX, which led, eventually, via a software programming career, to the challenging and awesome experience of data mingling.


Brian Kernighan playing tribute to Dennis Ritchie at Bell Labs

Data has become a fundamental material for almost all human activities in our lives, and as this presumably will not change and by the contrary will be reinforced, we need to think about data as a key driver in current and future human life. This blog will be devoted to talk about data, the technology, and the people who work with it, from its source, its processing, and movement, to its destination. People are changing our lives by using data in a unique or special way.

So, dearest reader, this blog is devoted to the Data of Things, from data sources and targets, the technologies involved, and those who produce it, use it, and manage it, … and maybe more.

A huge chunk to bite off, I know, but a delicious one, too. :)

Of course, do not hesitate to comment, discuss, and make this blog live… You just need to use the comment space below to start the conversation.

Comments

Popular posts from this blog

Machine Learning and Cognitive Systems, Part 2: Big Data Analytics

In the first part of this series, I described a bit of what machine learning is and its potential to become a mainstream technology in the industry of enterprise software, and serve as the basis for many other advances in the incorporation of other technologies related to artificial intelligence and cognitive computing. I also mentioned briefly how machine language is becoming increasingly important for many companies in the business intelligence and analytics industry. In this post I will discuss further the importance that machine learning already has and can have in the analytics ecosystem, especially from a Big Data perspective. Machine learning in the context of BI and Big Data analytics Just as in the lab, and other areas, one of the reasons why machine learning became extremely important and useful in enterprise software is its potential to deal not just with huge amounts of data and extract knowledge from it—which can somehow be addressed with disciplines such as data

The BBBT Sessions: HortonWorks, Big Data and the Data Lake

Some of the perks of being an analyst are the opportunities to meet with vendors and hear about their offerings, their insight on the industry and best of all, to be part of great discussions and learn from those that are the players in the industry. For some time now, I have had the privilege of being a member of the Boulder BI Brain Trust (BBBT), an amazing group consisting of Business Intelligence and Data Management analysts, consultants and practitioners covering various specific and general topics in the area. Almost every week, the BBBT engages a software provider to give us a briefing of their software solution. Aside from being a great occasion to learn about a solution, the session is also a tremendous source for discussion.  I will be commenting on these sessions here (in no particular order), providing information about the vendor presenting, giving my personal view, and highlighting any other discussion that might arise during the session. I would like to start with

SAP Data Hub and the Rise of a New Generation of Analytics Solutions

“Companies are looking for a unified and open approach to help them accelerate and expand the flow of data across their data landscapes for all users. SAP Data Hub bridges the gap between Big Data and enterprise data, enabling companies to build applications that extract value from data across the organization, no matter if it lies in the cloud or on premise, in a data lake or the enterprise data warehouse, or in an SAP or non-SAP system.” This is part of what Bernd Leukert, SAP’s member of the executive board for products & innovation mentioned during SAP’s Big Data Event held at the SAP Hudson Yards office in New York City as part of the new SAP Data Hub announcement and one that, in my view, marked the beginning of a small yet important trend within analytics consisting on the launch or renewed and integrated software platforms for analytics, BI and data science. This movement, marked by other important announcements including Teradata’s New Analytics Platform as well