Skip to main content

Altiscale Delivers Improved Insight and Hindsight to Its Data Cloud Portfolio


Logo courtesy of Altiscale



Let me just say right off the bat that I consider Altiscale to be a really nice alternative for the provisioning of Big Data services such as Hortonworks, Cloudera or MapR. The Palo Alto, California–based company offers a full Big Data platform based in the cloud via the Altiscale Data Cloud offering. In my view, Altiscale has dramatically increased the appeal of its portfolio with the launch of the Altiscale Insight Cloud and a partnership with Tableau, which will bring enhanced versatility and power to Altiscale’s set of services for Big Data.

The new Altiscale Insight Cloud

On March 15th, Altiscale released its new Altiscale Insight Cloud solution. In the words of Altiscale, this is a “self-service analytics solution for Big Data.” Altiscale Insight Cloud aims to equip business analysts and information workers with the necessary tools for querying, analyzing, and getting answers from Big Data repositories using the tools that they are familiar with, such as Microsoft Excel and Tableau.

According to the California-based company, with this new offering, Altiscale will be able to provide its customers with a robust self-service tool and an accessible and easy-to-query data lake infrastructure. As such, companies will be able to avoid many of the complexities involved in the complex and difficult preparation process of providing users with easy and fast access to Big Data sources.

To achieve simplicity and agility, Altiscale relies on having a converged architecture, so that on the one hand it can minimize the need for data movement and replication, especially across Big Data sources, and on the other hand, it can eliminate the need for separate relational data stores in order to reduce organizational costs and management efforts.

According to Raymie Stata, chief executive officer (CEO) and founder of Altiscale, the Insight Cloud:

Solves the challenge of bringing Big Data to a broader range of users, so that enterprises can quickly develop new offerings, better target customers, and respond to shifting market or operational conditions. It’s a faster and easier way to get from Big Data infrastructure to insights that drive real business value.

Altiscale considers that its Insight Cloud will be able to replace many more complex and expensive alternatives, allowing organizations to get their hands on Big Data broadly and quickly, without heavy information technology (IT) involvement. As such, Altiscale Insight Cloud will have a significant impact on the speed and facility with which organizations will be able to access and analyze Big Data sources.

As a high-performance, self-service analytics solution, some of the core features of the Altiscale Insight Cloud include:


  • interactive Structured Query Language (SQL) queries,
  • dynamic visualizations,
  • real-time dashboards, and 
  • other reporting and analytics capabilities.


The big news is that with its Insight Cloud offering, Altiscale will be delivering not only a reliable Big Data platform, but also an extension to its infrastructure that can simplify the connection between Big Data and the end user, which is currently a complex, slow, and expensive process for many organizations. This can also significantly reduce the need for expensive, proprietary solutions—not to mention that this new offering can avail many business analysts easier and faster access to an organization’s existing Hadoop data lake.

Of course, organizations interested in this offering will need to consider a number of things including Altiscale’s power to perform data preparation and cleaning to ensure high-quality data and profiling. But without a doubt, this is a wise step from Altiscale: to provide its customers with the next logical step in the Big Data infrastructure, which is the ability to perform fast and efficient analysis.
(post-ads)

Altiscale and Tableau: Business intelligent partnership?

Within a few short weeks of the Altiscale Insight Cloud launch, Altiscale announced a partnership with data discovery and visualization powerhouse Tableau. The partnership with Tableau will, according to both vendors:

make it easier for business analysts, IT professionals, and data scientists to access, analyze, and visualize the massive volumes of data available in Hadoop.

Additionally, according to Dan Kogan, director of product marketing at Tableau:

Altiscale shares our mission to help people see and understand their data. Partnerships with leading Hadoop and Spark providers such as Altiscale help us to bring rich visual analytics to anyone within the enterprise looking to derive value from data.

Now users can use Tableau connected to the Altiscale Insight Cloud directly via Open Database Connectivity (ODBC), the standard application programming interface (API) for accessing database management systems (DBMSs). Once connected, Altiscale Insight Cloud will enable users to create visualizations and perform analysis similarly to working with other databases.

User will be able to use Tableau’s easy features to drag and drop fields, filter data, analyze data, and derive insights to create visualizations that can later be published to Tableau Server. Additionally, there is a noteworthy feature that allows users to reuse intermediate solutions provided by Altiscale partners, so that users can first aggregate and catalog data prior to creating visualizations with Tableau, thus providing extra flexibility and power to the Altiscale-Tableau connection.

Of course, the first thing that stands out from this partnership is the opportunity for thousands of users on both ends of the partnership and from different disciplines to, on the one hand, be able to use an appealing and easy-to-use tool such as Tableau, and on the other hand, to easily crack the data coming from large and complex data repository residing in Hadoop.

This partnership shows how Big Data and analytics and business intelligence (BI) providers are moving in an industry-wise manner to increasingly narrow the functional gaps between Big Data sources and their availability for analysis, while widening the number of options for incorporating Big Data within enterprise analytics strategies.

While such a partnership is not at all surprising, it is relevant to the continuous evolution and maturity of new enterprise BI and analytics platforms.

But what do you think? Of course, I look forward to hearing your comments and suggestions. Drop me a line, and I’ll respond as soon as possible.

Comments

  1. Really this article is truly one of the best in article history and am a collector of old "items" and sometimes read new items if i find them interesting which is one that I found quite fascinating and should be part of my collection. Very good work!
    Data Scientist Course in Gurgaon

    ReplyDelete
  2. Informative Post. The information you have posted is very useful and sites you have referred was good. Thanks for sharing.
    Data Science Course with Placement

    ReplyDelete
  3. You have done a great job and will definitely dig it and personally recommend to my friends. Thank You.
    Data Science Online Training

    ReplyDelete
  4. Nice Post i have read this article and if I can I would like to suggest some cool tips or advice and perhaps you could write future articles that reference this article. I want to know more!
    Data Analytics Course in Gurgaon

    ReplyDelete
  5. Excellent post to make this blog more wonderful, attractive and cool stuff you have. Thank You.
    Data Science Course in India with Placements

    ReplyDelete
  6. I really enjoyed reading this post and keep up the good work and let me know when you can post more articles or where I can find out more on the topic.
    Data Science Online Course

    ReplyDelete
  7. I would like to say that this blog really convinced me to do it and thanks for informative post and bookmarked to check out new things of your post…
    Data Science Institute in Noida

    ReplyDelete
  8. Interesting post. which i wondered about this issue so thanks for posting and very good article which is a really very nice and useful article. Thank you
    Data Science Course in Noida

    ReplyDelete
  9. This is truly an practical and pleasant information for all and happy to see this awesome post by the way thanks for sharing this post.
    Data Scientist Course in Noida

    ReplyDelete
  10. The blog and data is excellent and informative as well your work is very good and I appreciate well hopping for some more informative posts.
    Business Analytics Course in Gurgaon

    ReplyDelete
  11. I read your excellent blog post. It's a great job. I enjoyed reading your post for the first time, thank you.
    Data Science Institutes in Bangalore

    ReplyDelete
  12. Nice Post thank you very much for sharing such a useful information and will definitely saved and revisit your site and i have bookmarked to check out new things frm your post.
    Data Science Course

    ReplyDelete
  13. I like to view your web site which is very useful and excellent resource and truly adored reading your posting. Thank you!
    Data Science Course in Gurgaon

    ReplyDelete
  14. I am hoping the same best effort from you in the future as well and in fact your creative writing skills has inspired me.
    Data Science Course near me

    ReplyDelete
  15. This is really nice which is really cool blog and you have really helped a lot of people who visit the blog and give them useful information.
    Data Science Training in Noida

    ReplyDelete

Post a Comment

Popular posts from this blog

Machine Learning and Cognitive Systems, Part 2: Big Data Analytics

In the first part of this series, I described a bit of what machine learning is and its potential to become a mainstream technology in the industry of enterprise software, and serve as the basis for many other advances in the incorporation of other technologies related to artificial intelligence and cognitive computing. I also mentioned briefly how machine language is becoming increasingly important for many companies in the business intelligence and analytics industry. In this post I will discuss further the importance that machine learning already has and can have in the analytics ecosystem, especially from a Big Data perspective. Machine learning in the context of BI and Big Data analytics Just as in the lab, and other areas, one of the reasons why machine learning became extremely important and useful in enterprise software is its potential to deal not just with huge amounts of data and extract knowledge from it—which can somehow be addressed with disciplines such as data

The BBBT Sessions: HortonWorks, Big Data and the Data Lake

Some of the perks of being an analyst are the opportunities to meet with vendors and hear about their offerings, their insight on the industry and best of all, to be part of great discussions and learn from those that are the players in the industry. For some time now, I have had the privilege of being a member of the Boulder BI Brain Trust (BBBT), an amazing group consisting of Business Intelligence and Data Management analysts, consultants and practitioners covering various specific and general topics in the area. Almost every week, the BBBT engages a software provider to give us a briefing of their software solution. Aside from being a great occasion to learn about a solution, the session is also a tremendous source for discussion.  I will be commenting on these sessions here (in no particular order), providing information about the vendor presenting, giving my personal view, and highlighting any other discussion that might arise during the session. I would like to start with

SAP Data Hub and the Rise of a New Generation of Analytics Solutions

“Companies are looking for a unified and open approach to help them accelerate and expand the flow of data across their data landscapes for all users. SAP Data Hub bridges the gap between Big Data and enterprise data, enabling companies to build applications that extract value from data across the organization, no matter if it lies in the cloud or on premise, in a data lake or the enterprise data warehouse, or in an SAP or non-SAP system.” This is part of what Bernd Leukert, SAP’s member of the executive board for products & innovation mentioned during SAP’s Big Data Event held at the SAP Hudson Yards office in New York City as part of the new SAP Data Hub announcement and one that, in my view, marked the beginning of a small yet important trend within analytics consisting on the launch or renewed and integrated software platforms for analytics, BI and data science. This movement, marked by other important announcements including Teradata’s New Analytics Platform as well