Skip to main content

2017 Teradata Influencer Summit: Blending In on the New Management Era

A couple of weeks ago I was fortunate to be invited to attend the 2017 influencer summit event in the beautiful venue chosen by Teradata in La Joya, California. Aside from the beautiful venue, a great event took place, one which was insightful, interesting and, well fun. A confirmation of Teradata’s evolution in both technical and b
usiness sides and a confirmation that the IT and software industry have radically changed in the last couple of years.

Since last year’s partners Conference and influencer events, Teradata keeps moving forward with its evolutive process to adapt to the new business and technical dynamics of the market. These year’s event allowed analysts, pundits and influencers alike to have a glimpse of what Teradata is doing to deliver value to customers and new customers.

More Analytics, More Integration, More Scale...

In its continuous effort Teradata is making sure its offerings are available in all shapes and forms, more precisely, in all major Cloud and on-premises flavors as part of Teradata’s everywhere strategy. This includes launching Teradata in the Azure marketplace, and increasing geographic coverage for its own Manage Cloud. In the same pace, the company is also working to rapidly adjust to business and industry changes to continuously improve solution delivery and services.

Right from the get-go John Dining, Teradata’s Executive Vice President & Chief Business Officer, gave us a clear overview the enterprise analytics and data management software provider is working on different strategic paths to ensure the company remains a top of its industry market segment.

John Dining presenting at Teradat's 2017 Influencer Summit Event

One key and noteworthy aspect of this overall strategy is Teradata’s bold approach and continuing effort to match its product development with the creation of a business coherent proposal via three areas:


  • Reinforcing its multi-genre analytics strategy, which means widening the offering of analytics capabilities to strengthen user’s capabilities in areas such as text, path and graph analysis, among others.
  • Boldening Teradata’s power to perform more versatile and flexible data movement and integration operations to support an increasing number of sources and complex operations with data. This includes increasing Teradata’s ability to incorporate intelligence and automation for data management operations as well as developing vertical solutions for specific areas such as communications, finance or lines of business like marketing and devops.
  • Increasing Teradata’s ability to scale according with customer's’ needs, especially for those with big data management demands.

One important takeaway here in my view is Teradata’s clear path from a technical perspective, focusing on real technical challenges to be addressed by a majority of organizations and yet, at the same time, changing its message to be less technical and more business oriented to provide clarity especially to the enterprise market, a market they know perfectly well.

Blended Architectures are in the Future Oh! and Yes, they Need Service

In a time where organizations seem to be increasingly reluctant to invest in consulting services and keen to look for vanilla deployment solutions, Teradata seems to be taking a more realistic approach.

On one hand, by putting specific measures to reinforce its services business, and on the other, by clearly acknowledging that blended architectures and hybrid deployments will be the norm in the following years or at least for the time being, which means having high quality consulting and services can be key to ensure success, especially in complex analytics deployment scenarios.

Aside from their incumbent software solutions, by taking aim to restructure its service and consulting areas, Teradata aims to have a better position to act upon these complex deployments that require specialized services.

According to Teradata, the company has been working to consolidate its services areas, via important acquisitions in the likes of ThinkBig, Claraview and BigData Partnership, as well as working to integrate them into a coherent service model, its Teradata Global Services Initiative.

The initiative is prepared on three main areas through:


  • Think Big Analytics, the global analytics consultancy group group leading with expertise in areas such as data science, solution development and data visualization for different industries and functions.
  • Enterprise Data Consulting, the technology-enabled group with strong expertise on analytical ecosystems, providing services ranging from architecture, data management & governance, managed services, as well as security 
  • Customer Services, the group responsible for providing value and availability of analytic platforms via change management services, and with expertise in systems and software management 

The strategy seems to be well complemented with the inclusion of a complete business value framework that, asides from a comprehensive analytics strategy for customers, education and the inclusion of Teradata’s Rapid Consulting Engagement (RACE) strategy, is aimed to help customers leverage comprehensive solution in a matter of weeks and providing “agile” development models for is customers.



Teradata’s approach seem to make perfect sense, enabling the company to grow efficiently on the technology side, especially towards a hybrid cloud approach while ensuring the offering of high quality consulting services.

Now, can this approach carry challenges for the company?

It is possible, perhaps one challenge for Teradata will be to ensure successful delivery, especially in areas where being “agile” is a must, especially talking about big data and data science projects which more often than not tend to require fast times to deployment so, Teradata will need to make sure consulting, educational and all service offerings are fine tuned, and in tune with its software and hardware offerings own evolution.

For this then, the company is working to consolidate its technical and business messaging to the company’s strategy towards: the offering of hybrid cloud Solutions, business analytics solutions and full fledged ecosystem architecture consulting.

So, part of his strategy includes, aside from reinforcing its go to cloud strategy, accelerating its existing release calendar to offer three major release a year for its flagship product Teradata Database, reinforcing its Intelliflex data warehouse appliance with new functionality and the launch of Teradata Intellibase, Teradata’s compact environment for data warehousing and continued evolution of Intellicloud, the company’s secure managed cloud offering.

So, on the Big Picture...

Many more things happened and were revealed by Teradata, both publicly and under disclosure, but from a personal view, what still sticks with me as the relevant story is how Teradata is managing to keep its transformation at a pace and form that continuous to have a fine balance between its more “traditional” data management customers and its new customers to ensure both offerings ranging in the “typical” data warehousing and analytics space and those that require innovation via new advanced analytics and big data ecosystems.

Challenges may still wait ahead for Teradata due to an increased and more fierce competition but the data warehousing company seems to be adapting well to the new data management era.



Comments


  1. Thanks for your post!


    شركة شحن عفش من جدة الى الامارات شركة شحن عفش من جدة الى الامارات
    شركة شحن عفش من جدة الى الاردن شركة شحن عفش من جدة الى الاردن

    ReplyDelete

Post a Comment

Popular posts from this blog

Machine Learning and Cognitive Systems, Part 2: Big Data Analytics

In the first part of this series, I described a bit of what machine learning is and its potential to become a mainstream technology in the industry of enterprise software, and serve as the basis for many other advances in the incorporation of other technologies related to artificial intelligence and cognitive computing. I also mentioned briefly how machine language is becoming increasingly important for many companies in the business intelligence and analytics industry. In this post I will discuss further the importance that machine learning already has and can have in the analytics ecosystem, especially from a Big Data perspective. Machine learning in the context of BI and Big Data analytics Just as in the lab, and other areas, one of the reasons why machine learning became extremely important and useful in enterprise software is its potential to deal not just with huge amounts of data and extract knowledge from it—which can somehow be addressed with disciplines such as data

The BBBT Sessions: HortonWorks, Big Data and the Data Lake

Some of the perks of being an analyst are the opportunities to meet with vendors and hear about their offerings, their insight on the industry and best of all, to be part of great discussions and learn from those that are the players in the industry. For some time now, I have had the privilege of being a member of the Boulder BI Brain Trust (BBBT), an amazing group consisting of Business Intelligence and Data Management analysts, consultants and practitioners covering various specific and general topics in the area. Almost every week, the BBBT engages a software provider to give us a briefing of their software solution. Aside from being a great occasion to learn about a solution, the session is also a tremendous source for discussion.  I will be commenting on these sessions here (in no particular order), providing information about the vendor presenting, giving my personal view, and highlighting any other discussion that might arise during the session. I would like to start with

SAP Data Hub and the Rise of a New Generation of Analytics Solutions

“Companies are looking for a unified and open approach to help them accelerate and expand the flow of data across their data landscapes for all users. SAP Data Hub bridges the gap between Big Data and enterprise data, enabling companies to build applications that extract value from data across the organization, no matter if it lies in the cloud or on premise, in a data lake or the enterprise data warehouse, or in an SAP or non-SAP system.” This is part of what Bernd Leukert, SAP’s member of the executive board for products & innovation mentioned during SAP’s Big Data Event held at the SAP Hudson Yards office in New York City as part of the new SAP Data Hub announcement and one that, in my view, marked the beginning of a small yet important trend within analytics consisting on the launch or renewed and integrated software platforms for analytics, BI and data science. This movement, marked by other important announcements including Teradata’s New Analytics Platform as well